Гормоны и ферменты поджелудочной железы

Гормоны поджелудочной железы.

Поджелудочная железа синтезирует ферменты, необходимые для пищеварения. Эндокринная часть железы (островки Лан- геранса) секретирует по крайней мере четыре гормона: инсулин, глюкагон, сома- тостатин и панкреатический полипептид.

Структура и роль инсулина были рассмотрены выше. Глюкагон — 29-членный пептид, вызывающий повышение уровня глюкозы в крови за счет стимуляции расщепления гликогена в печени, увеличивает содержание глюкозо-6-фосфата в мышцах и обладает липолитическим (жирорасщепляющим) действием.

Эти гормоны высвобождаются в панкреатическую вену, впадающую в воротную вену печени, что имеет важное значение, поскольку для инсулина и глюкаго- на печень служит главной мишенью.

Основная роль инсулина и глюкагона сводится к регуляции углеводного обмена, однако гормоны поджелудочной железы оказывают влияние и на многие другие процессы. Например, соматостатин подавляет секрецию гормона роста. Он участвует в локальной регуляции секреции инсулина и глюкагона.

На рис. 12.15 приведена схема регулирования содержания глюкозы СН в плазме крови человека.

В соответствии с этой схемой мозг (Сг), поджелудочная железа (Рп), печень (Нр) и другие ткани (Т1) находятся в потоке крови, через который осуществляется гуморальная связь между различными органами. Схема отражает одну из специфических особенностей взаимосвязи метаболических путей в организме — пространственное разделение взаимодействующих компонентов.

Большинство химических превращений в организме, а также активный транспорт через клеточные мембраны осуществляются с помощью ферментов и белковых молекул (Е).

В схеме рис. 12.15 учтены только два гормона, синтезируемые в поджелудочной железе, — инсулин (In) и глюкагон (G1).

Реакции в поджелудочной железе:

Реакции в печени:

Реакции в тканях:

Реакции в крови (дезактивация гормонов):

В приведенных здесь реакциях Е,, Еь, Еа, Ер — ферменты, функционирующие в соответствующих органах или тканях; Рг — протеин; In, G1 — гормоны инсулин и глюкагон; СН, СН, — глюкоза в крови и тканях, Gn — гликоген со степенью полимеризации и; Xj, Хс, — продукты дезактивации гормонов.

Рис. 12.15. Схема регу лирования концентрации глюкозы СН в крови человека:

Сг — мозг. Рп — поджелудочная железа, Нр — печень. TI — ткани. In — инсулин. GI — глюкагон. Ев. Е* — ферменты поджелудочной железы, Еь — гликогснфосфорилаза, 1ц — фермент тканей, Оь — гликоген печени.

СН, — глюкоза тканей

Роль инсулина и глюкагона в жизнедеятельности организма хорошо изучена. Инсулин активирует фермент Et и ускоряет переход глюкозы в ткани скелетных мышц и жировую ткань. В результате такой активации уровень глюкозы в крови быстро падает. Глюкагон активирует фермент Еь — гликогенфосфорилазу — и ускоряет процесс деполимеризации полисахарида гликогена в печени и мышцах с отщеплением глюкозы. В результате концентрация глюкозы в крови возрастает.

Увеличение содержания глюкозы в крови является стимулом для клеток поджелудочной железы к увеличению активности фермента Ер, что приводит к активации секреции инсулина. Уменьшение содержания глюкозы в крови приводит к активации фермента Еа в а-клетках этой железы и увеличению секреции глюкагона.

На рис. 12.16 приведен типичный пример автоколебательного характера уменьшения содержания глюкозы в крови человека после перорального введения различных доз этого вещества.

Рис. 12.16. Изменение концентрации глюкозы с (мг/100 мл) от времени в крови здорового человека после перорального приема внутрь:

/ — 25 и 2- 100 г глюкозы (норма 70-110 мг/100 мл (4-6 мМ))

Схему регулирования уровня глюкозы в крови нетрудно описать с помощью кинетических уравнений. Анализ этих уравнений позволяет сделать вывод, что автоколебательный характер возвращения биохимического состава организма к исходному состоянию после импульсного возмущения связан с наличием по крайней мере одной автокаталитичсской реакции в метаболическом пути. Такие реакции имеются в рассмотренной здесь схеме реакций регулирования уровня сахара в крови.

Например, увеличение концентрации глюкозы в соответствии с реакцией Ер+ СН Ер-СН -> Ер+ In приводит к увеличению содержания инсулина в крови,

а это вызывает увеличение абсорбции глюкозы тканями мышц

(Е,+ In Et-In + СН E,-In + СН E, In + СН,).

Помимо автоколебаний следует обратить внимание на другие особенности регулирования сахара, которые иллюстрирует рис. 12.16.

Во-первых, максимальное количество глюкозы в крови возрастает непропорционально дозе: дозы различаются в 4 раза, максимальные количества — примерно лишь в 1,5 раза. Эти максимальные значения в несколько раз ниже предельно возможных при данных дозах 25 и 100 г. Максимальное значение при меньшей дозе достигается значительно быстрее, чем при большой. Кроме того, наблюдается «проскакивание» исходного количества глюкозы в крови к концу периода релаксации до стационарного значения.

Перечисленные особенности адаптационного регулирования в той или иной мере проявляются и для других биогенных веществ, вводимых в организм. Они связаны с характером всасывания или введения в кровь, с одной стороны, и характером реакционной цепи превращений — с другой. Практическое отсутствие периода задержки указывает на быстрое включение компенсационного механизма адаптации внутренней среды.

Читать еще:  Как избавиться от болей поджелудочной железы

Экспериментальное исследование регулирования концентраций ионов ОН , CI , аминокислот и других веществ в организме показывает, что регулирование и этих компонентов носит автоколебательный характер. Это общее свойство процессов регулирования уровня различных веществ в крови, очевидно, отражает общность механизмов регулирования, в основе которых лежат реакционные цепи типа схемы регулирования уровня глюкозы.

Приведенные выше факты позволяют сделать заключение, что регулирование температуры тела также должно демонстрировать автоколебательный характер достижения равновесного значения. Этот вывод подтверждается экспериментальными данными.

Изменение температуры в организме гомойотермных (теплокровных) животных вызывает соответствующую реакцию терморецепторов. Охлаждение тканей приводит к увеличению расхода энергии для поддержания температуры на необходимом уровне, что, в свою очередь, интенсифицирует процессы поглощения глюкозы тканями и соответствующее уменьшение концентрации глюкозы в крови. В результате включается механизм компенсации, отображаемый реакциями регулирования уровня глюкозы.

Гормоны поджелудочной железы

Гормонами называются вещества, синтезируемые крупными эндокринными железами и особыми железистыми клетками во внутренних органах. Их роль для организма заключается в контроле и регулировании метаболических биохимических процессов.

Гормоны поджелудочной железы вырабатываются в органе пищеварительной системы, связаны с перевариванием пищи и усвоением ее полезных составляющих. Через общую систему гипоталамо-гипофизарного управления подчиняются влиянию необходимости изменений обмена веществ. Чтобы понять особенности деятельности поджелудочной железы, необходим небольшой урок анатомии и физиологии.

Строение и функции

Поджелудочная железа является самой крупной среди эндокринных. Расположена забрюшинно. В строении различают: округлую головку, более широкое тело и удлиненный хвост. Головка — наиболее широкая часть, окружена тканями двенадцатиперстной кишки. Ширина доходит в норме до пяти см, толщина составляет 1,5–3 см.

Тело — имеет переднюю, заднюю и нижнюю грани. Спереди прилегает к задней поверхности желудка. Нижним краем доходит до второго поясничного позвонка. Длина составляет 1,75–2,5 см. Хвостовая часть — направлена кзади и влево. Контактирует с селезенкой, надпочечником и левой почкой. Общая длина железы составляет 16–23 см, а толщина уменьшается от трех см в зоне головки до 1,5 см в хвосте.

Вдоль железы идет центральный (Вирсунгиев) проток. По нему пищеварительный секрет непосредственно попадает в двенадцатиперстную кишку. Структура паренхимы складывается из двух основных частей: экзокринной и эндокринной. Они отличаются по функциональному значению и строению.

Экзокринная — занимает до 96% массы, состоит из альвеол и сложной системы выводных протоков, которые «отвечают» за выработку и выделение в пищеварительный сок ферментов для обеспечения переваривания пищи в кишечнике. Их недостаток тяжело отражается на процессах усвоения белков, жиров и углеводов. Эндокринная часть — образована скоплением клеток в особые островки Лангерганса. Именно здесь происходит секреция важных для организма гормональных веществ.

Какие гормоны вырабатывает поджелудочная железа?

Возможности науки с каждым годом расширяют сведения о роли гормонов поджелудочной железы, позволяют выявлять новые формы, их влияние и взаимодействие. Поджелудочная железа выделяет гормоны, участвующие в обмене веществ в организме:

  • инсулин;
  • глюкагон;
  • соматостатин;
  • панкреатический полипептид;
  • гастрин.

До некоторого времени к гормонам поджелудочной железы относилось вещество С-пептид. Затем было доказано, что оно представляет собой частичку молекулы инсулина, оторванную при синтезе. Определение этого вещества сохраняет свою важность при анализе обнаружения количества инсулина в крови, поскольку его объем пропорционален основному гормону. Это используется в клинической диагностике.

В эндокринной части железы клетки делят на четыре главных типа:

  • альфа-клетки — составляют до 20% общей массы, в них синтезируется глюкагон;
  • бета-клетки — основная разновидность, на них приходится 65–80%, продуцируют необходимый инсулин, для этих клеток свойственно постепенное разрушение с возрастом человека, их количество к старости уменьшается;
  • дельта-клетки — занимают примерно 1/10 часть от общего числа, они вырабатывают соматостатин;
  • РР-клетки — обнаруживаются в небольшом количестве, отличаются способностью к синтезу панкреатического полипептида;
  • G-клетки — вырабатывают гастрин (совместно со слизистой оболочкой желудка).

Характеристика гормонов поджелудочной железы

Мы рассмотрим основные функции гормонов по их строению, действию на органы и ткани организма человека.

Представляет по строению полипептид. Структура состоит из двух цепочек аминокислот, соединенных «мостиками». Природа образовала наиболее похожий по строению с человеческим инсулин у свиней и кроликов. Эти животные оказались наиболее пригодными для получения препаратов из гормонов поджелудочной железы. Гормон вырабатывается бета-клетками из проинсулина с помощью отделения с-пептида. Выявлена структура, где происходит этот процесс — аппарат Гольджи.

Главная задача инсулина — регулировать концентрацию глюкозы в крови с помощью ее проникновения в жировые и мышечные ткани организма. Инсулин способствует усиленному поглощению глюкозы (повышает проницаемость клеточных оболочек), накоплению ее в виде гликогена в мышцах и печени. Запасы используются организмом при резком росте потребности в энергии (повышении физической нагрузки, заболевании).

Читать еще:  Гастрит как лечат в больнице

Однако инсулин препятствует этому процессу. Он также не дает расщепляться жирам и образовывать кетоновые тела. Стимулирует синтез жирных кислот из продуктов обмена углеводов. Снижает уровень холестерина, предупреждает атеросклероз. Важна роль гормона в белковом обмене: он активизирует расход нуклеотидов и аминокислот с целью синтеза ДНК, РНК, нуклеиновых кислот, задерживает распад белковых молекул.

Эти процессы важны для формирования иммунитета. Инсулин способствует проникновению в клетки аминокислот, магния, калия, фосфатов. Регуляция количества необходимого инсулина зависит от уровня глюкозы в крови. Если образуется гипергликемия, то выработка гормона увеличивается, и наоборот.

В продолговатом мозге существует зона, именуемая гипоталамусом. В ней находятся ядра, куда поступает информация об избытке глюкозы. Обратный сигнал идет по нервным волокнам к бета-клеткам поджелудочной железы, тогда образование инсулина усиливается.

При снижении уровня глюкозы в крови (гипогликемии) ядра гипоталамуса тормозят свою активность, соответственно снижается секреция инсулина. Таким образом, высшие нервные и эндокринные центры регулируют обмен углеводов. Со стороны вегетативной нервной системы на регуляцию выработки инсулина влияют блуждающий нерв (стимулирует), симпатический (блокирует).

Доказано, что глюкоза способна непосредственно действовать на бета-клетки островков Лангерганса и высвобождать инсулин. Большое значение имеет активность разрушающего инсулин фермента (инсулиназы). Она максимально сосредоточена в паренхиме печени и в мышечной ткани. При прохождении крови сквозь печень разрушается половина инсулина.

Гормон, как и инсулин является полипептидом, но в структуре молекулы присутствует только одна цепочка аминокислот. По своим функциям считается антагонистом инсулина. Образуется в альфа-клетках. Основное значение — расщепление липидов жировой ткани, увеличение концентрации глюкозы в крови.

Совместно с другим гормоном, который также выделяет поджелудочная железа, соматотропином и гормонами надпочечников (кортизолом и адреналином) он защищает организм от резкого падения энергетического материала (глюкозы). Кроме того, важна роль:

  • в усилении почечного кровотока;
  • нормализации уровня холестерина;
  • активации способности печеночной ткани к регенерации;
  • в выведении натрия из организма (снимает отеки).

Механизм действия связан во взаимодействии с рецепторами клеточной мембраны. В результате увеличивается активность и концентрация в крови фермента аденилатциклазы, что стимулирует процесс распада гликогена до глюкозы (гликогенолиз). Регуляция секреции осуществляется уровнем глюкозы в крови. При повышении тормозится выработка глюкагона, понижение активизирует продуцирование. Центральное воздействие оказывает передняя доля гипофиза.

Соматостатин

По биохимическому строению относится к полипептидам. Способен тормозить вплоть до полного прекращения синтез таких гормонов, как инсулин, тиреотропных, соматотропина, глюкагона. Именно этот гормон может подавлять секретирование пищеварительных ферментов и желчи.

Нарушение выработки способствует патологиям, связанным с пищеварительной системой. Тормозит секрецию глюкагона путем блокирования поступления в альфа-клетки ионов кальция. На действие влияет гормон роста соматотропин передней доли гипофиза через повышение активности альфа-клеток.

Роль гормонов поджелудочной железы в организме

Все органы и подсистемы человеческого организма взаимосвязаны, а их работа во многом зависит от уровня гормонов.

Часть таких активных веществ синтезируется в поджелудочной железе и оказывает влияние на многие важные процессы.

Благодаря достаточному количеству вырабатываемых органом гормонов осуществляются эндокринные и экзокринные функции.

Клетки поджелудочной железы и продуцируемые ими вещества

Поджелудочная железа состоит из двух частей:

  • внешнесекреторная или экзокринная;
  • эндокринная.

Основные направления функционирования органа:

  • эндокринная регуляция организма, которая происходит благодаря синтезу большого числа секретов;
  • переваривание пищи за счет работы ферментов.

Старение организма способствует развитию в органе физиологических изменений, приводящих к модификации установленной взаимосвязи между его составляющими.

Внешнесекреторная часть включает в себя небольшие по размеру дольки, сформированные из панкреатических ацинусов. Они являются главными морфофункциональными единицами органа.

Структура ацинусов представлена мелкими вставочными протоками, а также активными зонами, вырабатывающими большое количество пищеварительных ферментов:

Эндокринная часть сформирована из панкреатических островков, находящихся между ацинусами. Второе их название – островки Лангерганса.

Каждые из таких клеток отвечают за выработку определенных активных веществ:

  1. Глюкагон– его производят альфа-клетки. Влияет на повышение показателя гликемии.
  2. Инсулин. За синтез такого важного гормона ответственны бета-клетки. Инсулин способствует утилизации излишков глюкозы и удерживает нормальный уровень этого показателя в крови.
  3. Соматостатин. Он производится D-клетками. В его функцию входит координация внешней и внутренней секреторной функции железы.
  4. Вазоактивный интестинальный пептид – вырабатывается за счет функционирования D1-клеток.
  5. Полипептид панкреатический. Производство его входит в зону ответственности PP-клеток. Он контролирует процесс желчеотделения и содействует обмену белковых элементов.
  6. Гастрин и соматолиберин, входящие в состав некоторых клеток железы. Они влияют на качество сока желудка, пепсина и соляной кислоты.
  7. Липокаин. Такой секрет производится клетками протоков органа.

Механизм гормонального действия и функции

Потребность организма в нормальном количестве выработки гормонов равнозначна необходимости в обеспечении кислородом и питанием.

Основные их функции:

  1. Регенерация и рост клеток.
  2. Каждое из таких активных веществ влияет на обмен и получение из поступившей пищи энергии.
  3. Регулировка уровня кальция, глюкозы и других немаловажных микроэлементов, содержащихся в организме.
Читать еще:  Как определить цистит по общему анализу мочи

Вещество гормона C-пептид является частицей молекулы инсулина, во время синтеза которой она проникает в кровеносную систему, отрываясь от родной клетки. На основе концентрации вещества в крови диагностируется тип сахарного диабета, наличие новообразований и патологий печени.

Излишнее количество или же, наоборот, недостаток гормонов приводит к развитию различных заболеваний. Именно поэтому важно контролировать синтез таких биологически активных веществ.

Этот секрет занимает второе по степени важности среди гормонов железы место. Глюкагон относится к полипептидам с низкой молекулярной массой. В нем содержится 29 аминокислот.

Уровень глюкагона растет на фоне стрессов, диабета, инфекций, хронических поражений почек, а понижается вследствие фиброза, панкреатита или резекции тканей поджелудочной железы.

Предшественником этого вещства считается проглюкагон, активность которого начинается под влиянием протеолитических ферментов.

Органы, на которые воздействует глюкагон:

  • печень;
  • сердце;
  • поперечнополосатые мышцы;
  • жировая ткань.
  1. Приводит к ускорению распада гликогена в клетках, составляющих скелетные мышцы, и гепатоцитах.
  2. Способствует росту показателя сахара в сыворотке.
  3. Выполняет ингибирование биосинтеза гликогена, создавая резервное депо для молекул АТФ и углеводов.
  4. Расщепляет имеющийся нейтральный жир до жирных кислот, способных выступать в роли источника энергии, а также трансформироваться в некоторые кетоновые тела. Такая функция является наиболее важной при диабете, поскольку недостаток инсулина почти всегда связан с повышением концентрации глюкагона.

Перечисленные эффекты полипептида способствуют стремительному подъему в крови значений сахара.

Этот гормон считается основным активным веществом, производимым в железе. Выработка происходит постоянно, вне зависимости от приема пищи. На биосинтез инсулина влияет концентрация глюкозы. Молекулы ее способны свободно проникать в бета-клетки, подвергаясь в дальнейшем последующему окислению и приводя к образованию небольшого количества АТФ.

В результате такого процесса клетки заряжаются положительными ионами благодаря выделившейся энергии, поэтому начинают выбрасывать инсулин.

Образованию гормона способствуют следующие факторы:

  1. Рост уровня глюкозы в крови.
  2. Потребление пищи, которая содержит в своем составе не только углеводы.
  3. Влияние некоторых химикатов.
  4. Аминокислоты.
  5. Повышенное содержание кальция, калия, а также рост показателей жирных кислот.

Снижение количества гормона происходит на фоне:

  • излишка соматостатина;
  • активизации альфа-адренергических рецепторов.
  • регулирует обменные механизмы;
  • активизирует гликолиз (распад глюкозы);
  • образует запасы углеводов;
  • подавляет синтез глюкозы;
  • активизирует формирование липопротеинов, высших кислот;
  • подавляет рост кетонов, выступающих в роли токсинов для организма;
  • принимает участие в процессе биопродукции белков;
  • предотвращает проникновение в кровь жирных кислот, снижая тем самым риск возникновения атеросклероза.

Видеоматериал о функциях инсулина в организме:

Соматостатин

Вещества являются гормонами гипоталамо-гипофизарной системы, а по особенностям своего строения относятся к полипептидам.

Основные их задачи:

  1. Угнетение биопродукции рилизинг-гормонов гипоталамуса, что вызывает понижение синтеза тиреотропина. Такой процесс улучшает функционирование щитовидной и репродуктивной железы, нормализует обмен веществ.
  2. Понижает влияние на ферменты.
  3. Замедляет производство ряда химических веществ, включая инсулин, глюкагон, серотонин, гастрин и некоторые другие.
  4. Подавляет циркуляцию крови в пространстве за брюшиной.
  5. Снижает содержание глюкагона.

Полипепдид

Секрет состоит из 36 аминокислот. Секреция гормона производится клетками, занимающими в поджелудочной железе место в районе головки, а также на эндокринных участках.

  1. Замедляет внешнесекреторную функцию благодаря понижению концентрации трипсина, а также некоторых ферментов, содержащихся в двенадцатиперстной кишке.
  2. Влияет на уровень и структурные характеристики гликогена, производимого в клетках печени.
  3. Расслабляет мускулатуру желчного пузыря.

Повышение уровня гормона происходит под влиянием таких факторов, как:

  • продолжительное голодание;
  • потребление продуктов, обогащенных белками;
  • физические нагрузки;
  • гипогликемия;
  • гормоны системы пищеварения.

Понижение уровня происходит из-за введения глюкозы или на фоне соматостатина.

Это вещество относится не только к поджелудочной железе, но и к желудку. Под его контролем находятся все активные вещества, принимающие участие в пищеварении. Отклонения в его производстве от нормы усугубляют неправильную работу желудочно-кишечного тракта.

  1. Большой гастрин – имеет в распоряжении 4 аминокислоты.
  2. Микро – состоит из 14 аминокислот.
  3. Малый – в его наборе присутствует 17 аминокислот.

Виды анализов на гормоны

Для определения уровня гормонов проводятся различные анализы:

  1. Диагностические пары. Исследование крови выполняют не только с целью выявления активных веществ, вырабатываемых в органах, но и для уточнения показателей гормонов гипофиза.
  2. Стимуляционные пробы, подразумевающие введение веществ, приводящих к активизации работы пораженных тканей. Отсутствие роста гормона означает развитие поражения самого органа.
  3. Супрессивные пробы, заключающиеся во введении в кровь блокаторов деятельности желез. На изменение уровня гормона будут указывать отклонения в работе железы на фоне проведенной манипуляции.
  4. Биохимия, позволяющая определить уровни многих показателей, включая кальций, калий, железо.
  5. Анализ крови на ферменты.

Кроме вышеперечисленных анализов, пациенту могут быть назначены дополнительные обследования, позволяющие поставить верный диагноз (УЗИ, лапаротомия и другие).

Ссылка на основную публикацию
Adblock
detector